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4. A])])] icatio]] of blcuIal FJcJwo Iks 10 l’owe] SYStCIII SCCUIitY ASSCWIICII( :tII(i l\IIIIIIIICC.ll-ICJII

}(. 1’1$(411 l)df’,lllill  Niclm hf. A. lil-Stlwkow’i

l’.lcclIi(Nl IIIILI (’OIII]ILIICI  lhl~.ilwclil]g  lk~,tIliJIIcII[ IcI I’ic!j]ul,i(,ll  1 81101{  1(,:}’, 1 ~Jmlililc[ll  c~f }X’cllicrrl  t:!lf,ilrciirlr,
1 hcxcl llllivclsily [I;,lifm[iiit  l[l\!il(llc Of ‘1’C.. lIII(llog,~ II[livc[sily{)f Wasllirlf,lt)l]

l’llilwlcll)lli;{, 1’A 191(M,  [ISA l’II\;,dcIIa. (’A 91 1(F), [ISA SrtiUlc, WA fJfi19.$, [ISA

Al,ilracl -  ‘llIlk iIItoIlul  pr.~eltlb  MI, ovrt.ltw  d 11,  r ftjIpli  C*li  OIl of
urlifl[lkl  IJCIII.  I IIc Ikor  L (Ah’h’) i{, power  rjSt CIt,  tcculity  sIs Kes.  It ItJIt
(sA) u,I{I t,,,,, il) r,,l,u,,,  tl,,r,,t  (S1;). ll,c I,B*[II  61,jc[tiVC  Ot t)tib
Iulu:i.1  1A:  (i) to ldrl,ti~y  11,  t  typr of  stturlly  prul,lrl,,s  I,cII L1411crf
f,,r ANN  stl,pli(ullml aIId ( i i )  to Elvt a plwedurt  foI rfr~l~ItlI,~-  ANNI
r,,r SA 111111 S1:,  bpclri{  -My, how 10 CI,[MC  k KIWI A N N ;  1),, I,,l)ult.
11, r t!til[,h,~, s(1 b]t[l II(IR to C} UIIIMIC  tl, c Ah’N  t,ctr{,  rmu],  rr. Sl,,rt  11,  r
SA U%W$$I,,CI,I  ],rol,lc!,,  IIIVO18’CE  rlu~filricali~,l,, pEllrI,I IC{(,EIIIII(,II,
foIcdl[lilm, thtltntatlol,,  al, [l 1ss1 bolutl(m, it Im %Cll  b!llltd r<)l ANN
uj, pliculiolt. ‘11, ( liIuj(m]l)  of ANN  Ill  CIIitt  Ctllt  C&  lt$!d ilt SA SIl,d  Sl:
art t], { l,,l]lli-l~~rrcd  prIccptIo  II,  11, { KOlmlCIl  bml  the  }I{lljrl{hl
lLrlw  OILh. ‘ 1  Iir I,I(~ltlrI,,  of SC ICCIIIIK  a go{,fi  ANN ror S A  end  S 1 ’  16
t.il,,  iltir  10 Iltc  l,ri,l,lritt  01 brlrclin~  a ml of god srcutity  lIL(llce  A (,r
ul,p]<,hit,,utc &yhlclt, pcrroilllu]lcc  (ASI”) l,l[)d.lF.,  l . c .  Ilir
I, p: csc I, II,li Ior, II IOIIIC  III III Al,l,]okillluli(,],  “1 l,rc,ny. AlllI(IIIEII  III{ Lej
issur ill Iilc ~rIcc  Ii(lll ~)r ~ ~(ll]d AS]’ II, (Irfcl i5 IIIUI it I,t
(f,],,l,l,lulic,!,,,llj  fu.1, tl, is Is II II OII.l S.IIt  Ml, ct, Iid[,r A h ’ h ’ s (),, tl,  c
0111{1  IUKII II tlbt ULd  II IuCy <tr il:t prc(llc tic,),  01  tht 6CCIIritY lr\cl is d
palulllollllt  illlpllrlullct  $Illct  CIJ,  IICII Ckpl<hd(m  01 lilt Illput-oulplll
IL IMI, I,r tlIr ANN 1$ mot U> MI IMIIIC f(, t c\ MI IIu Iio I, CIIId  II, Mdtlil\II  II it Is
udu1titiv4 ’10  I,[lp Ild{llcl.$  tl,ls 15&Ut, Il,lt  tlllori&%l  al${l  ~i}t$  e
It WIIKd rt, r t8MluuIlI,~  lltt Ah’N dCdp  II II, ttIIMk  d II< SIt  IIt II C-Y III
lbrt(li<lilo~ 11,, C(O:IC<I Icv.I Or bt<tIIltJ. \’&&tll,llk Ckalt, ]tlch hrc ~ibcl,
w ~i~c  1111  ICUIII  b SIII iudgltlk  III1O tlIC bpc{m~ d ptd,ltlils  Irlulillg
[(, 11,1  (Ir$ij.1,  of Ah’N  fot SA MI*CI  S1;.  AI, eIltI,blvr  lilr)wlu!c  list
pWIBI.  tlBC  IC3(I,  I to IVIOIC  dct Miltd  idm,, butlm,.

1. lN’I’I;OI) [I(.1’IOIJ”

l’t I\ffcI sys IctII Sccutity awcswIIclIl is tlIe pI[Ic4ss d dclcllllillillf, V.’hcthc[
IIIC lhI\vcI syskIII is ill a wcmv m akii (illwcmc)  s(iilc, u’l IcIc SUU(IIC
s(a[c ilill)lics 111~11  IIIC l(I;i(l  is Salisflc(l  illl(l II(I  lil]lil  Vi(llilti(~ll S V.,ill  (Jcclll
1111(  ICI J)ICSCII1  (IIWI  i![ill~,  c(ul(lili(ms  nlI(l  itl  ttic ]Mcsct Icc (I( Ilr If(I]csecl  I
utl]lilt~,ci)cics (i c., fwla~,es d OIIC m r.cvciul lilies, tIdt Isfol IIIcls w
~,cIIcIi,l(IIs) [1{:4111  c1  ({/ , 1992],  ‘JIIc rilcIi (w clIIclgclIcy) shte illildics
(11:11 ci[}icl s[IIIIc Iilllils al<.  vi014tcd fIt Id/01 tlIc I(WI dclIIl{lItl  ciIrIIIIIt Iw IIIcl
;III(I c<llj~,clivu wli[llls Illll<t Ill’ ti(k Cll in O](1CI  10  Iuillr,  ttlc }hlli’cl  S) ’s11.111
I,;{c}: I(1  (1,(.  SCCLIIL.  S[;IIC  ‘lIIV J:cy is\ucs  ill sccllli(~ ;I\scsstIIclIl [Ilc: ( i )
fit\l idclllifl( ,Iti[lll (If ttw scl [~f itlsccurc ccu,lili~,cl)[  its; a[I(l (ii) tllcii
cv;tllld[i(ul ill I{ IIIIS of Itw scVClity of thcil inijml olI Ihc IxJV:cl syslcll I
(jlwI,tli[)ri  (i.e., c(~ll(ill~:clwy Idllkillr,). .Jhc sdulimi  Of tlwsc lIi OIIlcIII~
illv(dvcs  Iuc(lic(i{ul,  p~lttcIII  :cwf,r)ili(ul,  clnssiflu[l[i(~ll  :111(1  fl!~l  s(tltllioi],
~vl)i(ll  ;IIC  t:i~l.s  UFC1l  suitc(l  f(jl  [IIC  ANN tc:lll)olo~y.

( )Vcl liIc lI:l\l fcv.’ yc:!lsj  a IIIIIIIIWI Of 8]1111(IW.IIC!,  Ll<illf, ZlliiflCiill  IIcllrtll
IIet\\-CIIk.S  ( A N N s )  lI:I\’c I,ccI) ]II{JIIOSCLI  si< altcrll:\(ivc r[}c(t!(~(ls f[>l
Src(l  lily  i! ’.s CS\lll Clll ill  Jxl\,.,cl  Systel II olw]tili(lI]s  [Moli tlll(l  ‘1’sll?(lki,

l{ll(lwlcd~c :Icqllisiti(lll

Kllll$!lcdpc  ICl[ icvill

(’lllllplltatio]l

SIOIC(I Il;tliil,,  (ll’ls

Cmllplllatl(lll
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‘A rcliat,l($ pOVWI  SY~lCIII  slmuld hc [I1rcIiIM so tlIrit it CO(I wi[hstaml the
ol]ti)r,c [If iil)~ SySICIII  C< II III K*[ICIIt  [1[ ZI SC( O( UIIIIIUBIIPIIIS.  “J’[> lhis CII[l,
nm( ]IOWCI SySICIII~  aI~ WCrakd  m rr fIISI colltill~,ciq b a s i s .  A
Cmitlitlgclwy  is a scl Of tiy}K~tllctic:il llclv,~mk ccluilmwIlt Oulrrgcs m
lucakcr  rslsrrali(m such Sr~ the 10ss c,f rt gCIICI  atm, trsmslllissim litm, rr
transfwllw  w iI cwlll~ilmlim]  Of sucli. III cm!tinr,c[lcy aImlysis, user.
slwciflcd (Nlli]r,  cs tire cxalllilwd lo assess llm cf(w(  Of mntirtfyrlL-ies  a!d
alert the systct II olwatms 10 the pdclttitdly  lmll}ful rmcs tfjat viOlale the
cz]uipfilcrd OiwItitilig lilllils rrtId/01 drive tlIc systcr[l tO vc)llfip,c awl lrfIasC
a@c imtrrltilily clr cxccssivc  flcquc[lcy dcvi~liolw. “JIIc nms( cmmlcw
litllil viOlrilimis ilwludm htrmlllissim  Iille andh L]iimfo]liwl  tilcrlllal
Ovc IlcIads, al, IIOIIIIal wllar.cs  and ckccssivc vr~llrir,e rfr-virrli[jns.  Givin
ffli+ illfwllmliml. a sysWII  Opmalm crin jud~c Ilte relalivc severity of crrch
cOlltilJF,cllcy and dn.ide  i f  preveltlivc  aclif)t)s s}milld hc itliliated tt~
l[iitif,atc  Ihe ]wtcnlia] pIOblrwIs. ‘Illc best cOIIt IOl strtitcgy fur Ilmvittr,  the
systclll flt~ill all imwwc Mfilc iltt(~ sccu Ic slatvs is what is called semity
enllalmlllcIll  (S1!).

‘lhc tradiliOIlrrl c(m(in~,cwy  selccliort ald rankin~ fil>l>]Oar+l is “10 USC
rmIIc tylw of mimmo!ir mnlin~rricy  sclrclion  (ACS) cu cmlfirl~erlc)’
scrccnir~~ (AS) rjmthml.  III cithm W$C, the kcy ICI a ~ucKl  A(’S w AS
IIICIIKICI  i s  that i t  i s  fasl ill cOllllmlritiOIl alId accuttrlc in CJIIICCIIY
idcntifyin~, llIc  hallliful c(lllliri~,c[wics, lllat is quickly rcduc-itlg  IIlc
contill~ellcy  Iis[ I)y clit!lillalillF, al) (IIC irielcva[l(  (w h a r m l e s s )
cc)lltirl~,crtcies. h40recivcr, it rllml ri{tik tbr- c~ljtillgc[lcy iu rc]atiw
scvcrily and if Prmilllc lnc41icl lhc JK)s[-c<)tltiilr,e[ll Iitlc flr~ws. vOIMF,es,
fICIJUCIICy  al)d sySICIII slabilily. ‘1’() acliicve tliis, VarioUs Srlg[lli[tlllli[
lIIct}IOds lIfi Vc I,ccIl l>ltI1xIsed,  Cac41 Of m’llich  uses all (Ipptcninm{r=  Systcll,
prrJo)m~t/cc (AS]’) II KKICI  which rrrv c<)l],l,Ll~a(ic~r]ally efflcictd tc) eithe]
idcttlify (he i[mcculc cOrlLitl~cfK’ics arldlw eslir!lalc ihc ellllrmccnlcrli
stla[c~,y [l I;IILI CI d., 1(9!!?,  l;l. Sl)ar Jiawi cl (i/., 1992],  ‘fhe ASP II IrKlCl
caft bc cithc) ii scalar ]Klforlllalw index (i.e., security index), m r+
lil)(iirizcd  syslcl II lII(KIC1  (sllclI a\ dislril,utim  fsrct(,I s), m a sill@ifmd
(Iyllalilic IIILI(IcI

‘Illc  Slardfild  aIll)It~actI  h,  lttc sccmity  asscsslrmllt J>]O}delII  is 10 1~1 fOIf,i
flls{ l}w slatic Scclllily al}a]ysis alId Ihcrl llIc dy[talllic sCCUIily  aualysis
‘]~lC .!/fl/iC .!CC-l/l if)’ MO/ySiS cVtdUO{C$ tllC fKKt COlllillp,C.11[  StCady Stak’ Of
t h e  syslclII ]w~lcclitlr, tlIc Itallsiclll  Iml]avior md  ariy rstlmr till@-
dclw[idcrit  Valiaticllls dllc to CllilIl~,CS  in ILl:i[l-p,cllcl  titi(lll cmditimis.  011
lhc Otlm hand, the dynamic  Srclrriry afdy.ri$  evaluates  the Iililr -
(Iclrclldcllt h ar[siti(lri fr(lIll (tic l~rc-cwrdiu~,cl]l tO ttlc [rOS1-COlitiligC.  [11 sirrtc,
slwcifwa]]y,  I}IC  stability  [If tlw SySICIII  tmLh frmll the suiall and larg,c
Ircltwl,rrtic)rl lruitltof-views.  h4(,sl of Ilic I,rcsc[d l’.rwlgy h4aurrgcl]wi}t
SysIcIIIs (liA4S) lwJf[~Iili OIIly lIIC Slii[i( sc<ulity analysis. llw dynamic
SCCUI  ily  iillalysis lIIc(lI[)(ls  are rl(,t folly Oln’ratirsnal and are curicnlly
l)citl~,  tcs(cd aIId cvaluald lri the fOllOw’ir)g scc[im]s iswcs  in slotic
sccIIIity awcssttwul :Irl(l  dyrlalj]ic Swulity  r4sscssIIIc IIl w~ill h discuss(d
aI, d II,IcC c a s e  sltldirs  (If al,j)licali[~[t  (If I,cula] I,ctv,,[)lks w,ill Iw
plcwtcd.

lri slalic scculily  illlalysis llIc ~K,\vcl  systclII is lIIOclcled by  a  set (If
c+mlily  cmshainls  rcp[csenlitlr. IIIC ;rmvcr Imlatlcc al each l~LIs  (called
load flow cqLlali(nm)  slid a sc[ Of irmqaality cmstraints  rclwcsenling thr
tlIc II IIal, wltar,c  aIId F,cuc!atm VAI Iirilils. I“rw  a Iwtwuk  with n bllw  s,
lhc 10:td flO\\, c4plali011s mn be w’liltcn in rI Fclicral  furtj] as:

Jk’al }’OU’CI f,,, = 1’, - P,(?.,Y, (’A) = 0, i = 1, . . . ..ri (la)

kCiiCliVO  I’ll\\’Cl.  fql = Q - Q,Q.,Y,(lL) ‘-  O , i : 1, . . . ..II (lb)

\\’lIcIc l’i :!II(I  <), dcll(ltc llIc [Ict rcfil ald Icaclivc IKru,ci irijwlirm 81 t,U\ i,
rcslrcctivcty;  I’I(A,Y,(’1) illld QL(~,Y,(I~) CICIIOIC IIIC Idal and rcaclivc
lmvcI corlsul(tj)li(u]  hy IIIC wtwlwk which dq~ld  On the vollagc Vedor

X : [}7(!”1  ,fj] j“]; ~ (i~li(lk’s [tic [lctt!’()~k I>[lls!rllct(>r$  ; and  [1A dcllotes til~
c~l[itirlp,cll[,y  Slwt.ifl[ally.

(2)

\\,llCIt Iil : Vi /(),: C(lIll[llCk V(,lt/lf,C  ill IILIS i; Yij: tllC ijttl CICIIICIII  Of tllC
Iw a(hliiltafw  lllallix.

v.,herc  Ilm  suIwl>cliljls  1 all(l  11 clcrmtc t h e  k)wfcr  a n d  u[]~wr  lirl[its  a[d
z~,(:~-)  tlclIotes  [k Iiuc flOu,s, lc]ad t,us wlta~cs  and gcImlalnr valb.
‘Jhc vcx IOr Jt iri Z(u.(’1) cilli,ha<iz~s tllc,t e a c h  rcspcmsc vatiab]c Zi,
depctd~  m IIIC il]jcctio[,s M (wl,ich Icp IcscIIts a l l  the  irlrfclwrdcrlt
valiahhs. tIrrmcly, llw I{ al rrrld rcrrclivc lord bus prwvcrs,  j’~ allcl Q,
~coeIist(v ~p arid volti,r,c l,iarjlilmlc Yg) via tlIc ScllLlti(lr) c,f iii,(l),

Ilrrscd (,II (IN- al~{)vr, t h e  dctectiml  Of iljsccurc  cm~lit)gc]]cics is a
hyf,Olt,~ s i s  tcslil,~ ~~lLIIIlrlII  whiCh dclcllllims whcllm  m  wt Ihc
cwstssriljts of (1) ard 0) arc satisfml  fw the ptcscwt  qwratirl?, point, u,
arid thr set of prmIIIlaIcd c(llltillgcrwics [[’~, ~. = 1, . . . . Nc), ie.,

III (Ck,:llil,fw)cy ilm.ul,. al lca~t (,IIC li[llil vic~la!iwl):  (U.(:k) @ S S
(4)

110 ((kwtitl~cljcy SC(lIJC: rl(] Iilltil Violirtio]l): (u,(l) c Ss

whc]c SS is tlIc set Of all [u, (’I.) satisfyih~ ll]s. (1) rrtd (3), Siucc both
lhc pm.w irljccliorls, Q, slid c(,lltili~,crwics,  C“I., alc ulwcllaill hwrfusc Clf
such dlslu[l]a[ms  a\ urlcOlltl(lllcd 10ads, wcafhcl, cw[qrmcld  mllagcs,
etc., O,c scmIity  as~cw,w((t pr,)l,l{’111  i< [)[(iul~ili$tic ill natulc.

‘J’o ohl.!ill all aJ,l)lsri~al of llw scvcvily of cwh ilwemrfc colltihf,ehcy, lhuc
isrc ba~ic ally two (?) al>i,l{mc Ims: cittlcr (i) a rtillkitir.  index is used (0
cvrrluatc  the level of ovc{ load; cu (ii) a set of discjc[c levels is LIsed tO
dckmi,iw  tlw scvcii(y d IIIe Iitllil vid~iti(ms,  tttal is:

(s)ZJ*S .Z(II. (’}>) :’. zL1’, s = 1, . . . . N,

w}mre sulselsclijlls  1 .S illld 11s dclI{)Lc  the Iwwr aIlcl ul~Jwr liIllit  fur lhc
severity Icvcl s; Ng dcIIOIcS  the II UIIIIWI of sevc[ity  lCWIS  at which
a]lpruj,]latr’  COIICCII\’C attlorls slIc)IIld bc tfikcll by  SyStCIII  C,lxra((Jr~,  ],,
rlmst t [iw’.s,  this tyj~ Of {{lalse Sevclity level ifffOli[tali(Jri  is sufflcicrjl fnr
Syslel,, O1rcltilOIS  I(I irliti[{tr f,tcvcntivc w Cmlcclive aCliOrls,  and the O.rrcl
10s[-OmtitlgcI1( y >’illllC  i~ r~r!ly of 5C4X111(I:UY illlpo]trrncc

lu sul,lrllary, ltw s[atiu scculi[y awcss[lmnt pmblcn, irnplics rmlvinf, Iiq
(4) f{u all Imtlllalcd  c{,lllir)~,mwies, wlmrc each c(,ntiti~cltcy reprcscnls
tlw Ol,(af,c Of L’itlicl {Ilr. 01 a set of ]irws andh f,ctwltitms. qhis implies
(he cvaluatim  Of (4) fru rrll c<uidirlatiml$  Of III failures ml C)f u cleuwrlts,
V. fhiclt is alI cxlJcIIIcly laIg,c rlulldjcr. l:rrr hirf,e prover Iwtv.wrks, evcrj a
rcdmd scl Of cmtil]r,c[wics calmol h treated ir] real ti[llc afd tilclcfurc
VirriC1il  S al)llrLJXilll:ltill~,  II I(KICIS illld rlicthmls lIaVc twr} {ICVC.1OPC<I, .S(IlitC
of ttl[ w arc diwrliscd  II(  x(

2.?. ,Wct!i( ,VCCIII  it> A ndysi.y:  (kri b’crltimwl Ifch?riquc$

“1’o r~.lucc Ihc corll],llt~lti(lrl[tl cffurl Of the sccurily awssllictit,  pIcsctItly,
IIImI l~rwr!,y  h4:irla~,cllwrlt  Systclll<  (l;h4S) usc mm m rrmre Sccurily
Assc+nwllt  (SA) l,rcdict[)Is (such as .wllsitivity Il}atrix,  clisllilmtic~ll
facto,s,  fas( ck cwrplcd load flows, or 1* I forlllat)cc irKlical(ws) to reduce
ttw r,mibcr  of Clili(al (r)rjlir)f,cllcics h) bc calculated explicitly irl real -
tir]lc ‘lhe[c brc rlla!ly SA ]ucdictors  available, car+ ]Jiakill!, calairi
rr\su,rIii(~r)s {JII lIIC rmtvmk (v t}w (>Iwlsrti[ig strrlcs, ill mdcr to rcduc~. tJK’
cc)lIl)WrliOrl effml  ir[ ltw cvaluatim I;(JI cxanlp]c, the simplest scalar
SA I,!cdictors arc c~f IIIC scalar cwtef,rwy havirtp  the ~crmsd f~~Illl[l:isClll
a[ld ( “how, 1993]:

l’lf-tl,(’)) : -: v.’,ll, (U,(:*)
?

(6)

W’11(, c f’] statds fur l’clf(llllla[]cc Irdcx;  hk(~, (:1. ) is a real-vahlcd
fllll[  ti(Nl  Of (J1,(’J,)  illl(! [M’~ ) arc }K,sitivc w’ci~,tltirl!, COCfflCiCIl[S.  ‘J’tt(’
rloti~liorl l’1(!l, (1).) clll]lllaKi7cs LI)at IIIC 1’1 i~ C%riil  U~(Cd  at [tic clpcratili~
[r(~i[,t, ~, a[ld cOl)tirl~ullcy, (’). ‘1’his 1’1 is used both for irmcculc
cor]tirl~,etlcy de[cc[it,[l  and scwrity ratlkirlf.. ‘J’he corltirlf,crlcy
clas. iflcati(m is ]wfolllwd  w.irl: l}Ic follou’irl~,  Critcri( u]:



d, ({:onlittp,cncy  inwcmc;  at Ica$t C)llc lilllit Vi(,latim,  ): I)l(u ,( ’A)  >. “1’1 I
n )

whcIc “Ill is wli)c slwifml or L’alclllalcd  Uucshold value. ‘Ibis ciilcliOIl
is used fc)f cilhrr  UICIIIInl Ioadillr, Ii([[it violation C} ICCJ:, (Jr }wlta~c lilnit
Virslalinl] dmck, 01 V(lltilF,C  stallilily  ClleCk  V.,l Icl I UIc 1’1 ill  (7)  xcl Mc.scIILs
cittwr a loadillr, i n d e x ,  cv rr V(lllar,c itdcx, or a  slallility  iudcx,
rcsjwclivcl y.

Althrrug,h  this tylr  of SA I~lcdictor is C[~Ill[,utiiti(,ljally  cfflcicIlt, it IIIrry
not classify tlir c.orlti[lxcllcics c4micctly.  “JIIc cut[lujativc effect of t}w
81JI>r{>xilllati{)lls  n]adr hy the SA predictor and the Lulce[tainlies duc to fhc
Cxugcrlous  farlms  (Suctt as Lrtm)llfrullal,lc  load aIId wcirthcl  Col]diti{lus)
]Cad to 1~’(~ lylNS Of CJ1OJS ill SccLIIily  C]:iSSifiC:l(iCltl:  JliiSStYl Cictccti(,n 0[10
false ahu~li. A missed dctecli{ul  is ouc ill which LJIC a!scssnicut says that
the syslcln iS smurc, but h tCiL]lly  h is JIOt A tii]sc rr]alli)  is OIIe itl whid)
h a$SCSSllM’ld SayS th[lf thc SyS(CIII  iS IIISCCLUC While in rCali(y JIO S)WWI
rmilsfrrrillts Ilrrve Iwcl) violated. “Ilw twc~ eilt}rs earl t,c qualltifiect  using
I;qs. (4) and (7), in terllm of Uie l~rolmbility  of nlisscd dctcclion,  1’1,,,
and lhc plohability of false alarnl, I’fti, as follcws

l’fa , 1’1{(11  I 11(,) (8a)
1’,,,: Pl[d(, I 11] ) (W)

A good swxrrity  asscssmnt “pl-cdickJI” is tJw!cfoIe OIIC that has the lcasl
Jnnoullt of false alarills aud IIo Jllisscd Clctccfi[)[ls (l;ISC III an<l  (:IIoW,,
1993,  (;how c1 ~J/., 1992]. ‘Ihr’rcfolc ]iq.(~) p,ivcs the Jrcrfcsrmanrz
ildcx  fot
pI c41irlllI.

2.3.

2..$.1.

7.3.1,1.

As SCCII  in the rcfrvcllrcs  lhc III(mt IKIpulirI choice of NN is UIe Illulti-
laymcd pmx’ji[oll.  ‘Ihc rcasol] fm this is its ahilily to lcaru c)[l-litjc. ‘III(
piul,lcrII  is ttIc sclccfi(,ri [>f tlw hililtillg  set arj(]  UIc selecliclll  of UIc i[l]mts
A  gooci  IIIctiIo(i fm lcciucillg liIcsc is to usc SOIIIC  of lim SCCLlrit~

inciicahm prcsentiy calcuiatrci by tiw IiMS systclll as i[llm(s to the ANN
‘lhis wiii IIIakC tiw ANN act as a [x,s!-{,roccs.sor fm illlJmlvinf, tile
accuracy of tiIc Srmll i(y prc4iictio  11.

III {i{i-S11ark8v.,i C{ al,,  1 9 9 0 ]  OIW slrccif]c c(J[ltit]~cJ}cy is flxeci ill
ii(ivrrrl  cc. ‘lIIc  scculity  imu[](ialics  aIc tilcll trailwci witil a Mi .1’ wilicil  is
usc{i as a (iccisiou tml in cmicl to dctmni Ilc wimtiwJ  JIII u n k n o w n
olrcralitlg prrinl Iics insicic UIe SCCLlli(y imtrttiarirs  of t h e  space of
injmlions witil lcsJrrzl lo Utis slrcciflc c~u)titl~,cllcy.

‘Ihc usc of IIIC llopficici nc(work wvts explnite<i ill [Yan CI al., 1991] fol
tiw JIJc(iiclioJl  of the  class  of Vioiatiotls foI l){~st-ccJ[lli[lF,c[icy b u s
VohaF,CS,  V[)ltdF,c dlopS an(i lil)c f l o w s , “1’hc ANN is UICII USC(J kl
cicterl]lillc liIc ScVL’Iity o f  tllc violirtiofi allci tiic lil!iititig cx)tttiIlgcJtcy
l]l~~vfskill~ tiiis vi(,latioll ill ttlc first J,lacc, “Illc ]ii’i[ SIc[) is fc~tlllulattxi as a
ilillary ol,linliz.atio]l lIIoi)lcIII. (h)ly a sui)scl of itll cmltin~,eucics is
chosen fw this al@icafion. ‘llIc architectLtrc  of tile 1 lopftchi ~tctwork is
usmi as  an associa t ive  nwlllory fol Iiic rchicvai  of tiw linliting
ccmtingcncics un(icI cellnin assu[lll~tions. lnstcwi  of calculating li,c
wcigilts of Li]c ih)j}fwki Iwt usi[l:,  (iw SUIII  of outer prociucts of thr input
wclors,  the weigids ate rilht~rjllincci  usinp iinear programming whit h
gum irl)[ccs ii iaip.cl r(gioll (If c(uIvcI g,CIICC[i;ISCiIl cr a/., 1990].

~lolh hfi ,]’ an~i ] ]Iy)flr]ci JMwork Ihclcforc re(iucc the (iitlleflsioflality of
UIc lII(ll>icIII lIy rc(iuuirt~. tl!c Illlnil,cr  of colltirlp,cIlcics  atId  o f t e n  ily
kw-’j)inr, il]siF,niflcallt pr)wcr  Viili:ll~]C\  collsfal)f.

2..?, 1.2. Urlsqw! ui.\rd mid )Iyl)jid Archifecfulcs

[!l)Vll[mlvisl>{i I!cl\\,{Mks CI())CI IL.(iucc ltlc [iilllcllsioll;  !]ity  (If tile scCLIIily
tiwcssIIIclIt iMoiIlcIII i)y rc(iucin~ liw dillmlsioll of UIc olWla(iliF. vector (M
i,y (iumltifill?,  tiw OJwralill~, S] IiiCC. ‘llIcsC tcCi)lliqLICs fall into ttw srirlw
Ctilcgory  [>f tcchltiqum  ilS stalisliciti  fc:jll)lc dctcclion  aigo Iitilnls or
Clllstcl ill:, lCCillli(]llC\.

IiIII socL1l-ify awessllml ulwIrcJvisc(i  Ilclworks of[cu act as a ciata p]c.
I)IL,CCSS(,I  f(ll a c(~IltillF,cllcy analysis tooi or i! lIcLII ai nctv?ork, ‘lIIc

unsllIwl \,iscci layci i< Ilsc(l f<!] ciata rcciuctinn, tile SLIIIcrvised  lsrycl  for
datfi rct!icvai, Wtlicil usually irlclmics LJlt’ W~U1ilY ci:l$s Of t}m rr[wldtill~
statr. ]L>.arnplcs aIc rii<cl}sse<i in [Wccrawcrrl ya anti lii-Sl)arkawi,  1991]
W,IICIC tj, e ~nrllLl[lell.lx+VC ‘j’ldl]s Ic)rlllftti(lIl  is CIMlli,i IICd V.,it}, a hli .}}, ill
[Sobaji( C( u1.,  19X)] W’I,CIC  A}< ’J’-? like nclwork is coJlli,iI)cd  w; Ii, t},r.
l;u[lctioiiai-l.illk Ncl, or ill lRar~awecra,  a!~(i Karwiy,  ]993] ~~t)erc tile
Radiai )!rr~is l~unctlo]ls  NcIu’(IIk  cc>Itslstl[,g o f  a ~OiIOIICII iaycr for
qLlautizlliofI  arid I{ lilwar SLIIKI viwti layer.

in [WccmooIiya  and lil-Sllalk~wi,  1991] fol rc<iuc!ion of the dillleIl\ioll
of tlic illpu[ ciatti vcclol is aclticve(i V’ifh  the ptincipai cOlltImmnt anaiysis
Ilietiirrd  (aisrr caiicci Karilullcri-1 .of.!ve cxiJarlsioll), “1’his method
dctclnlilm  tile cip,cnvuckvs cortcslronrJillF, to the Iargcst cigenvaiuc.s of
tile allt{)-corlcli{liClll  nlafril o f  trait]ing vcckws a s  i t s  principai
rx~IIIpoIIc IIt$. ‘Ihc rc<i~lccd tlai!lillr,  vcct(ms  arc sclccIc4i ill ciircz.tion of ttIc
Jlmst d(,lllillarll CiJ?,CllVC< kus. LJsirlg fhiS tww set of rcducxxi vectort., a
hfi J’ ii ti)cn tririllc(i to idc(,{ify UIe security ixmrxiarics nf the rrpcmting
sJmcc (SW conulwllts II, rcfcictm [lZi-Sharkawi  ef af., ”199fJ] above.)

Quall(ijntiol,  of tile 01<1  .itir,g Slmcc it,l(} J,l,,t[,lyjre Olmrrrting,  slfitcs has
hccn ploposc(i fur Um swul  ity awcssnwflt of a snlaii space station
tlmvmlissirru systt:)n ill [Sotmjic r’t [1/., 1990].  Aa uusupcrviscd AK’l’2-
likc ANN is usc<i for tiw cJt]stclirtg c}f tiic i[,pL]t vectors. l’or this ANN
cacil clluster has an adaJiively  dctcrIllinc{i  ccntcr, the. typicai opcIatirlg
state ,  bII[i a ra(iius whici) iIas 10 ilc (ictcJlllincd irl acivancc, usLIrriiy
timnrf,i~ eXIwritllcIlttlLiclli. l;caturc rctricva], that is, titc SCCLJlity slate of
cart) tyl]ical opetirtilif. Stctllrri[l  is intplcnIcnte4i  in a sulwrviscxi  nlanfwr
wilh th[ IJul)ctiollai 1 ilk Ncl a!c-hitcclulc

A (iiffr, cl)t qualltizatiotl i(JIJU{lilCil  f[~[ i(ie[ltifyirlr, tiic seturity rc.giotl is tiIc
setf-c)flaniz.ing fcatmc IIIap ijrcsc[ltcri ill [Nicbul an(i (icrllmfd,  1991]
rmi [}[1 Sharkau’i and Attcli, 1993],  ]iach mutoft has rsnc wcighl vcdoJ
which ICprcscrlts LfIc CC IIICI of a Clii$S Of OJWriltillF,  states. “Jhis  weight
vwlor ]s interiwtcxi a~ a Iyi)icai opm atinr, state which in ti~is application
i s  givcll i~y ttlc Iitlc ixwcrs, “J’hc siz.c of each claw  dcpcnrts OJI t}w
(irmsit) of prot)abilily  d i s h  ihrrtion of ti]c 11 ainiug, vectrsts. “Jllc
unsrrlx rviscd truini[lf.  IMCKCSS  cofritmcts  illtclllmiiate  classes witich do
n o t  rt’j,rescnt rIny t[itiIiill~, vcctm tjLlt rilay classify  ultkrmwa  syslcm
strrtcs, thus gcnefaii?.illp  i[lf[)llllatiotl rrII kllou’[1 strrtcs. 111 aciciitiol] 10 ttic
claw irlfornlation, tile ?-dilllcnsionai  Self -orgiinit.ing nlap gives a 2-
dimcfl~iouai rclucw-[ltatit,n c,f tile fll-clirltcrlsic~r,:+i  operating space. 3?IC
opcralint  sl)acc is pI cscnkxi on the nlap hy sccurc and irmxLm  rcp,iofw.
A OIOIL dctaiic<i cxa]ll[dc i\ cii$cuwe<i in scctiolj 5.

?. .3.2. ChOiCC  O~]tl/,Jl~  ]klf(l

A power Systcll,  Stfitc CaII bc ciIaI ZICICI  i~~(i eitiwl hy the bLrS irtjcr[ions or
the  bus vollagcs ald llIc tl)~solof,y,  cu i)y the litlc power  flow’s,  For
trssinitlg. a set of Olrcl alinp, points is oi,lailmi  either try file.asurcfllcflts or
ily crfllinc  toaci flow sirllula[ions, ‘I he a(ivzullage of using bus itljwtiofls
and liltc powers. is tl~at tlwy ale avaiiatdc as nlefisurenlcnts whiie hus
vcdtiif’~% Juus( hc Cslilnahxi.  1.illC ixNveIs mt&ril!  implicit infoIllmtioJl  011
UIc trq Io1oF,y of fhc nctw[uk all(i irmcaw  the rc~iuudancy.  Ou the oUwr
hanci, the dintcl[!iolt of tiw ir)jcc~ion vcck,r is snlalicr than that of the Iilw
JOwcl vcclor. ‘lhis is 811 advirrlk+gc U’iIcn (i<’illillg wiU1 real-wc~llci imver
Systcil Is,

in addition to unsuJ*rviwIi lcchlliqucs theft, arc a nunliw c,f tcchniclrrcs
in tile literature to rr{illcc tile inIml tiala, c..g., clLMrMing ai,out typicai
ojrcri~liux points. A g(w(i aj){,rcmch is to usc a i)orrI\ciing tcchniquc to
identiry the criticai alca~ of lhc power systcnl arlci trsc that infornlation to
Jcduc{ ~hc iupu[  da[it irq,ut Anotiwr rllClh(K]  fol seie.cting irlputs is to usc
tfIC p~t,sclltiy  Ci~iCLll:,tCd  sccltrity iri{iicators i,y ti~c ILMS SyStCJll  as illJmls
to [iw ANN. ‘ll\is v., ill rlmkc tim ANN act iikc all aianl] pr,)ccssrn for Um
EMS system atl(i thus lwr[olui on-iillc rllasking itl or(icr to rt,{iuc< tile
nuntl,t.r of fnisc aialllls ari(i nlisscs,

2..?. . . . 7’rdinihg

]n a(iciition  to coil\’er)li(lrli\lly hirillsd  nculai networks tile follrwinp,
illli]l(,vcnm[lts  iIave IWCII  iII(lIrosc(i.

i’or hf] .]’S  parliaiiy trailui \\’it]) s(ii[l(]ii[d ~1]’  rllctilocis, rcfcrcuce [()!, cl
(l/., ~ 991] PKIJKISCS  kl USC [JUC1  y  haSCd  ]C;irrllll&  whCr  C rlcw haillirl~
poin(. arc Kc[IcItt(c41  V,’ittl arI irllcr va] iialvirt~ lltcUicKi in ortier 10 get flme
accm atc Iscrforl[li\rlcc  (III a sLltlsct c]f d~lti{ Wtlc]c  ti}c Ml .1’ Pcrfo]ll(a(lcc is
stiii ilwfflcicllt.  “Ii, is llwtimd works welis OII rmisy ir)jJLlt  ciata
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in tJIc 1 lopfwlcl  8pproach i~m~t~.wd  in [Krm CI al., 1990] the weights arc
,dctcrnlinrd  with a linear progranuuing  approach inslcad of the sunl of
outer  produr-ts  of training, vectors, in rrrcter to assure a larger  slirhitity
llmrgin for tf)c couvcrgcucz Crf the pn>ccssing algcwithm.

2..3.4. I’erjm)mtcc

WiI}I L}IC  exception of [Oh, 1986], where an 196 hrrs systcm is studied,
all rcviewecl papers wcwk with situulatccl data usually floni slllall
stand wdi~.ccl power systems  like the ItHi or CIGRli  tc.s! systcrns.
}Iowcver when working with simrrlatcd data ANN can only pruvitlc. an
appr~xirllatic~ll of the suppo.scdly cxacl noll-linear power syslcrll n~odc]
and for one specific crfscrating point the prediction of ahnonital conditions
is m mcwt as good as the rrncs done hy complete cmtingcrrcy  analysis.
I’lcscn(ed classification errors rank iu the order c)f S tn 20%,.

1 Iuwcvcr more  work  ncods to bc rfrrnc  in rrrdcr to prrsd Lwc hcttcr
performance. criteria A major step in this direction is profmcd  in IYan
r-r al., 1994] and discussed iu sccti(sn 3.4.

1.ct us now study two exan~plcs of a supervised and an unsLlpcrviscd
neural net for static scc.urity asscssrncnt in more detail

In order 10 quantify the concept of secure ancl inscmuc rqxratilg  strrtcs lel
us intloducc  4 severity lCVCIS, Nornial,  Alert, l;n~ergcncy I and
Iinmg, cncy 2, as slmwn in I“ahlc 2.

___ _. -_.._L4~3:2v-..f:1:3l:3.1[~ : ltilwr~c[’rcy 1 (l{l) S.0-S.9
It? : 1.111 H4CII*2  (1:2) >6.0

1[, tlw frrllowin~ sedions  wc will prc.scut the design of an ANN-hmxf
SA III cdictor  which prcdie.ts  if the power syslcm  is in orIc of the tJICSC  4
scvcrily  kvc]s. A 17 hLM power system mrrdcl shown in I;lgure 1 is
used fur illustr atkm of the design and cvalurstiml of d)e ANN.

.1 ]. ANN A rchitrclurc

l’or tfw ANN architecture WC sclectcd a rnulti-laycrtxf pcxeptruu  shmvu
ill l“i~ 2. “Ihe Illaitl rt’as~)ns for chr~rrsing  tt)is ANN iil’L.hitC<tLlr  C C)VCI’  ttlc
CIttlcr ANN architr-cturcs is that it is sLlitallle fc)r dealing with nonlinear
p[,,hleti]s,  that cffcctivc training algorithm are availahlc, rrnd that oLltpUts

(1( tllc rlctwork can Iw qurmliflcd. I“hc 3-lay ertvl perceptr on consists of
the IIIJ)LII  ]iiycr,  a nliddlc (hidden) layer, and all mrtlmrt  hrycr discussed in
tile ncxl  scclior)s:
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.Sevcrity 1 .cvcls

Iigurc  2: lhe Mrrture of UIC Neural  NduIrxk

3.1.1. lry,ut I,ayer

A general guide for the iuput l~ycr is that it should incluclc as nlany
neurcms  as needed for the dcsmd input infornlation.  I Iowcvcr, as
indical, d in [I:ischl and Chow, 1993], dIc system data sclcctcd for this
layer should show CJOSC  conclaticm  with the output data, Sincr our
ol}jcctivc is to study IJIC thermal overload and voltage drop prohkms,
Wliich arc usually caused hy heavy power transfers, we usc the area
trirnsfcr ICVCI (M W), the tic line flows (MW), the pre-contingency line
flows (MW) of (IIC CI itical  line outages, and a set of Iinc outage
distrihutirrn factors (l II’AX) as data for the input layer. Ilascd on the
atmvc,  [}IC itlput  rierrrx}lts  of our NN arc ordered as follows: the pre-
contill}, cncy area tra!lsfcr (M W), individual tie line flows (MW), pre -
contin~,ency line flow (MW) of the. otrtagc line, and the IWAX of the
critical contingencies (y u.). ‘lhrrs, for our 17-hus  system cxarnplc wi[h
1 area transfer (hctween 2 areas), 6 tic. lines, 1 contingency outage (one
contirl~,ency at a timr),  aIId 6 mrrnitorcd lirlc.s, 14 neurons are used in tJIe
input l:iycr.

5’. I. 2 ]liildert Izrytr

‘1’0 da(c, there is no exac[ guide. shout the choice of the numhcr of hidden
layers and the nunlhcr of neurons in each layer, although some work has
hecn done in Selecting the numtrcr of neurons iri the hiddco ]aycr
[NO WISCI and King, 19!)1 ]. “J’oo  many ncunrns can lead to nlcmoriz.alien
c)f the training  sets w,ilh  ttle.  dan~cr of losing the ANN’s ability to
gcncr,lli?c. ChI the c,tlm hand, a lack of ncuruus  can irlhihit  appropriate
pat(m  II classification ‘ii,  ohtaiti an “optimum” nrmhcr  for the nurnhcr of
neurons in the hidden layer, We variccl t}]c nurnhcr frcm~ 20 (o 60 and
conl Iurcd the avcra~,e total cncrrs. I:or each change in the nrmbcr  c)f
hiddcll units, the NN was trained one hundred tin,cs ar)d the average
m or for each case Wi]s  note.d. llrc rcsLllts indicate that the optinlum
nulnbcr of hidden ncunms is somewhere around 40, as inlprovcnicnts  ill
the ai crap,c cn ms trvd {0 saturat~ ahovc tflis level, We chose 36 ncunms
in our  fiwrl dcsigrl for t!m hidden layer.

3.1..3, Oul[)u(  ILrycI

ANNs are trail]cd with hinary outputs of 1 and 0. llowcvcr,  in reality,
[hc outpuLs  arc ckrscr to analog values in a range [0,1]. Ae.ceptahlc
classifrcr results call lIC rcse( to 1 and O if the output valurs are >.8 and
<.2, respectively. Thr’ output Iaycr provides the information on the
sevel ity Ie.vcl c}f the limit violation. For our 17 htrs systcni. WC UsCcl 2
tmur{ms  to repleseot the 4 levcIs of severity.

3.2. ?’rainirrg .%1 Sckcrirm

Since training sets m the information required hy the. ANN to develop
i[s c>.perLisc, rhcy lied to hc. rcpresci)tativc  of the differc[tt states. Wc
usc {Iff-line. bad flow lcsLllLs to frrnll cmr training sctx, Crmsidcring,  that
in tlIc, real world, tlw cxac~ krad-gcneratirrn profi]c will differ hccausc rrf
Unc[mtro]]ed k)ad, ch8rlginf,  weather conditions, ard other ullccrh+irltit’s,
we can assurnr. that the real Ioad-gcncratim  pI-ofdcs to hc stochastic and
the tlclerministic  off-tine load flow results to represcl}t the cxpcctrd
values of the pjufl]cs.  As wc ouly Llse these cxpcctcd values for our
tr aillitig  (Iatil,  the Iiccd ii] iscs for an approach to cvalnatc the cffcctivcncss
of (lIC NN as a nwat]s (OI class iflc.atinr).

IICII our 17-t,us systcr,l, IIIC training set consists of off-line load ftrsw
results flonl 9 cases Iu[mc.scllting area transfers fronl S22.$ MW to 6337
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MW and Um corrcsponriirrg contingency cases. l~ivc single line mrtagcs
are corrsiclercd in thc  StUdY.  As nolcd  earlier, the back propagation
algorithul  is used for Um training.

3.3, A New Prdiclion  i’crfm-tnrmco  Measure

Recall tha( for the binary type of ~curity  asswsmcot  (SA) of lkl.(4), the
cffectivcncss of UIC SA predictor ean bc evaluated in trnos  of Pfa and Pr,l
of Iiq. (tl). lhis also holds tnrc for ANN-based SA predictor. I:or the
severity evaluator which uses Ure  many lCVCIS  like those shown in P,q(s),
the cvalrratirsrr process is more eorrlplicatcd hccause wc must perform
nudti-hyjmUmscs  testing. To do this wc ncuf to quantify the emrs made
by the ANN if a classification dg is predicted by the ANN while the
severity ]cVC]  1 lk is blSC.  lhc probability of such an oc-crrrrcnce is the
conditional probability that classification d’ is made when the severity
kVC] k Ilk,  ;. e. Pr{d,llik  ). I.ikewisc,  thC probabi l i ty  Of a COI-reCt
c]assiflcation  is }’r’(d~l[]k)  and the probability of severity level k is
[’r ( i ik ). ]f there arc Ns severity lCVCIS  in the classification, wc can fcam
a square nlatrix of size Ns with the diagonal tenr)s rcprcscnting  the
correct classification and off-diagonal terms representing the
rnisclassiflcaticm. lhrrthcnnorc,  if 1 IS is define.d in order of increasing
severity, the }’r( d~ll ]k ) terms are associated with missed detection and
false alarm, whcli  s < k and s > k, rcspcciively.

Ideally, a perfect ANN predictor is rrnc whose Pr(dgll Ik ) = O when s<k.
(“learly  this is highly unlikely. We therefore sug~cst the fc,llowing
pcrfonnancc indices and criteria for Urc cvahration of the pcrfonnarwe  of
ANN-hascd  SA cvalrrator for security assessment [Yan et uI., 1994]:

(i) 1 mal performance indices related to the accuracy c,f the severity ICVCI
“k” predietor, }’]k,

h~rf#lk)_ , Sfk), k =: O, . . . . . Ns-I])]k  = :nax{ ‘l,r{dk I }Ik) (9a)

P]k is related h thC maxin~um  crfor of thC prCdiCt(lr  in COrICCt]y  Clas-
sifying  the syslcIII  severity at lCVC1  “k.” l;or Urc ANN 10 be acccptahlc
for the severity lCVC1  “k;’ this P]k must he lCSS than some threshold
val La.’, &l, as dctcrmincd by the dcsigucr. Wc C11OSC  F] = 0.3.

l’rJd,ll~]
p]knl=  max( ‘pr{dk , ~lk-)-,  s<k) ), k = O, . . . . . Ns-! (9t1)

]’]klri  is rc]atcd  to the maximum error of rnisscd dcicction al h:vel “k.”
lnr the ANN to bc acc~ptahlc for the severity level “k,” this Plk must
be less than some threshold value, F2, as dctcnnined by the designer.

Wc Chose C2 = 0.1.

(ii) Global pcrfomlancc  indices related to missed clc(cctiou, I’It,l, rrnd
false alarm, I’Ira,

Ns-1 Ns-1
1’1,,, = ~ ~ ]’r{dbl][k)]’r(l[k ) (Itkl)

s=f) k=s+l

(lot))

Plj,, and I’]fa arc related to the overall perfonnanm  of the ANN in
nussed detection and false alarm, respectively. In powe[ system
sczLlrity asscssmcut,  an acccptatdc  “predictor” is therefore onc that
has the least amount of false alarms and nearly no missed detections
(i.e., 1’11,, = O) .

If two  ANN dc.signs  are to bc compared, the more desirable cme is the
ouc Wit}l r]lOSt  Of thC  ]’lk  and }’]krrl  @MIS hr?]ow  thC.  thrCShOkl  and With
sn)allcr  PI,,, and Plfa. Wc cmphasiz.e the word “nmst” here bccausc
Ccl-li]irl  severity levels arc obviously clf nmrc conccru than the uthcrs to
the syslcm operators.

3,4, ANN l’erformmm I<valu  alien

‘Ihc ANN is cvalLlate. using the following unccrtaintirv in power syslcm
opcri+tion: ‘lhc gcucration uncertainty at hus 1 I has a normal distribution
w,ith SOI1)C mean and a variance of 1.0 p.u., and thi]t the S sitlgle line
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outages are  equally likely with a 0.2 probability of oearrrcrrcx,  “1’hc
generation at bus 11 WSIS  varied to create ~ lCVCIS  of area transfers,
namely high.  nwdiuln  and low transfers.

Based  {la the nlcthod  dcscl ibcd in [Pischl and (!how, 1993],  uw h~ontc.
Carlo $imulation  was  USfd  to obta in  the  condi t iona l  probahiiity
]’I { d~ll 1~ ) and the prot,abdlly  }’r(l Ik ). qhe  rcskrhs for the nlcdium
ts ansfcl Icvel are sunrrlial ized by Ure conditional prohabilitics and the PIL
terms is shown in Table 3.

l’able ~: Summary oflfIc  condItimal ptmbililk  h{d~il~k  ) and rhe probhility  of hyporl

_*———  —,.  —

~~:k~..

a

110 11 11 113

do 0.999 0.000 0.047 0.000—— . . .
dl 0.001 0.780 0.007 0.000—— —..
dl 0.000 0.220 0.783 0.000—  ..— —  . . ” . . .

.!?---- . . . . . 0 . 0 0 0  0 . 0 0 0  0.163  1 . 0 0 0

[

.—. — .

Ilo 11, 112 [1~— —  .-. —-—  . .  — - .

}’1”  PI 0.204 0,249 0124 0,423—- —.”—-

Idcally U]e matrix shown irl Table 3 shoulct only have a diagonal of value
onc. Illis is the case for the prediction of vicdations of scvcrit y level } 13
where r]o false ahmns  and (naturally) no more severe, missed violalious
arc preilictcd by the ANN. Values below the diagonal of the niatrix
shown jr) Tatde 3 indicate the probability of false alarms issued tIy the
ANN. Values above the diagonal indicate misses. }:or cxarnplc the
ANN l), cxficts nomlal olrcration, i. e. do, ins(cad of cmcrgcncy 1, i. c
112, With a prot,ahility of 0.047.

in gene, al an ANN with higher vahrcs for the Pr[d&lI Ik ) terms near the
diagon;,l is better thar, the. one with lower values. This is tmcausc the
value of the diagonal temls can be incrcascd, if Urc “bandwidth” of the
severity level can bc expanded to inclucle that near diagonal tcrrn as part
of the “’expanded” diagonal term.

l;or the c]assif;cation  of 4 severity levels, the ideal case should bc tha!
I’r( }Ik ) = 1/4. lhis is approximately the case, as shown in “1’ab]c 4.

From U,e values in ‘l’able 3 and I@. (9) and (10) wc can now calculate
the local and global performance indices PI~, I’I~n’, 1’11,,, PIfa, shown in
l’ahlc 4 Note that these vahms are smaller than the constraints C1 and F2
respectively and the prediction of the ANN is thcrcforc  sufflcicnt]y
accural(

I’atde 4 SUnmary  of tiIc.  Ioml ar]d  global performance indices for UIC Sc.vcri[y  l’redwtnr  /

.$. s

=E3izEEElI.wal  P.7f0rlllaXc Irl(icx

PIK1”

— .—. —— —.. ..—.

“ - ” - E l

Gi[ltlai  Iw[lr,,larm illlrc.x

1’1,,, 0,007.—. — ..—
1’1[, 0.075.—— .. —-

.Trmmmly

Ihc apj ,roach presented ahovc uses a probabilistic test mcthc)d hascrt on
the classical decision thrwry. lhc performance indices can he rrscd to
conlpalc the effectiveness of varia~ious of ANN designs in minirniz.ing
the prot,ability of misclassification in the security asscssnlcnt  ‘Ihc irrdi-
vidual ~onditional prot)ahi]ity terms from fhc approach cm alsc~ bc used
to LlUC4WCr  arms wheru dcsig[l or training itl)pruvc~l)erlts can bc made.

llascd  on the proposed nmthod, a goc)d ANN design should have the
fnllrrwilig charirck’ristics:



1) On the overall performance, the global indices l’l(a is Mow a
pmdctcrrnincd  thrcshrdd, I’In, = } O and

2) ];or  each Icvd,  the  kxal  indices l’]k  and l’Ik”’arc less than El and
F2  rcspcctivc]y.

4. AN lJNStlPIIKVISl~I)  ANN IK3R Sl”ATJ~ SIKIJRI’1’Y
0 .ASSll:J~A’JION

10 illustrate the applicaticm of the Kohoncrr  classifrcr for static security
assessment, we briefly present the application of [hc nicthod for a simple
power sysIcn) as discussed in [Nichur and Gcrmond,  1991; 1992; El-
Sharkawi and Attcri, 1993]. “1’hc trained neural net provides a two-
din~cnsional  rcprcscntrrtion of the high-dimensional operating space. lhc
cvahration of this map reveals fhc significant power syslcm features. Ihc
terms Kohcmcn  network and self-organi?.ing feature map are used as
syrmylns  lhrmrghout this scctif)n.

4.1. Srarfy OJ n 5 lia.~ -7 [irw  I’mver Sysfern

“Ihc. Kohoncn network is used 10 classify line loading patlcms  resulting.
from single and douhlc contingencies for a 5 bus -7 line power system
rcprescntrd in ]:igurc 3. “Ihc input vector representing the operating state
is defined by 7 mmplcx  crmporscnts or, alteroatcly, 14 real cmqxxmsts,
the 7 active ard  reaclivc  line power flows. }~or brevity, the lines irl
}iigurc 3 will hc designated hy the firs{ Ictter of the JSUSSCS  connected hy
this line, c, g. 1,inc Nordl-1 .ake is called N-1,:

Chic  load and generation scenario was defined as the Jsrrw case. I?rc 46
training vectors were ohtaincd by of(-line load-flow simulations of all n-
1 and n-2 contingencies using lhc non-linear power system model.
Ihcsc 46 vectors can also bc viewed as 46 differcrr[ line loading patterns
corresponding 1046 ttiffcrcnt power system topologies.

‘lhe  information on the bus power injccfions is implicitly present in the
input vcctnr since the pvcr on the lines connecting to the same bus will
add up to the bus power. ‘Ibis means that the input vectors lic on a
manifold of the vector space. ‘Jherefore the actual dimerrsion  rrf the
rslwratirlp,  space  is s]nallcr  than twits  the rlusnher  of lines.

I?re information 00 the bus voltage is implicitly present in the input
vectors as a rmn-linear dcpendcncr  (the load flow equation). The.sc can
he looked up in the da[a base for the trained cases.

lilgs. 3, 4 and 5 show the base case, N-1. contingency and N-S
rxsntingcr)cy  for the S-bus systcrn rcspcclively.  Only the active power
flow has I)ccn  rcporte.cl  in the network presentation. The opcrathg
vcckrrs incluclc active ancl rcactivc powers.
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Figure 5: ‘[he pmw flow for rk cor,tirtgcmy of line NordI-SoartI.

I’hc tmsc case and cordingcncics  lic in different manifolds of the.
operating spare, Assuniing a maximal tolerated active power of 100 MW
for each line, N-S co[ttirl~cncics result in N-1. overloads and vice versa.

4.2. Troinirtx  OJI}IC J i-a!wr Map

A 7x7 self-organi?.ing nlap has trccn trained with 46 single, double and
mixed contirrgc[}cy operutin~ states which were presented several times
in rardom  order. Aflcl about 4000 steps of Icarning, the network is
already organil.ed,  i. c. the weight vectors have converged to an
cqrriiil,  rium point of tlw neural systcm.

4..?. Iivdu<,liort c{thc Clmfrr Mapjor  7’ruinirrg and lest Da!a

In order to evaluate tiic classiflcatiorl  results, a set of test vectors has
twen gcncratc.(i al a’ “reasonable” clistance from the 46 trained vwtors
throup,h uniforn) vmia[ion  of load and generation at 90% 95%, 10S~Ot
and 11 O% of the total load of the base case. lhe claim of a reasonable
distat)ce is jtrstiflxi hy tl,e practical cmrsidcration that load and generation
for a network usually vary around a scheduled case. 184 untrained
single and ciout,lc contillg,cncies were presented to the Kcrhonen
classifier. I:igurc 6 simws the. cJuster map for fhc classification of the
184 untrained VCCLO]s.

-
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. . Neurons shaded with the same pattern classify at least one test case.
l?rcy belong to the same chrster and classify the saute type of security
violation, for example neuron 42 and neighbors classify N-S
contingencies resulting in N-1. rrvcrloads,  Neurons marked hy hold
circles classify at Icast  one training case. Ncurorrs with empty cases do
not classify neither training nor the test vectors. That means their weight
vector has never hccn chosen as the closest vecksr to any of the training
or test vectors.

Several different clusters can hc distinguished. Normally loaded
situations arc clmsificd  by neuron 33 and its neighbors. Neurons in fhc
upper right crsrncr, i.e. neuron 6 and its ncightrors classify N-I.
.contingcncics resulting in N-S overloads. Neurons in the lower left
corner, i. e. neuron 42 and its ncighhors  classify N-S contingencies
resulting in N-I. overloads. Islanding is classified by neuron 46 and 47.
‘fle set of neurons classifying test cases includes the set of those
clawifyirrg training alone. Note that operating in different suhspacas, i.
e. N-1. and N-S contingencies arc classified by neurons situated far away
from each ofher on the map.

4.4. Classijic(rlirm ErrorJor  lhe Tcsl St-l

For drc 184 untrained cases the total error rate, including fake alarms and
rnischwsifications, is about 8.4% whereas the misclassification rde alone
is only 4.470. All ncumns  involved in misclassification indicate a
security violation for at lcasl ouc component and therefore already
present unsafe operating points. If we are only interested in unsafe
versus safe cases, there would not hc a single misclassification in this
test set, because the most significant ovcrkmd situatio~l  is always dettited
correctly. l“hc wrong classification may however occur for a less
significant overload of another line. ‘lhc misclassifications never declare
an unsafe state (0 hc safe, hut the magnitude of the apparent power of
one line would bc wrongly predicted as not ovcrloaclcd in 4.4% of the
test cases.

A second test set was gcncmtcd,  taking 20 haw cases with loads varying
individually in the range from 75% to 125% of the trained base case.
Simulation of all single and double contingencies thus yields shout !XKl
test vw[ors.  lhc classification error for false atarms is irl the order of
7.43%, the misclassification erwr  is 3.35%. Once again in 2.4 % of the
misses occur for operating states involving two or more overloads where
the severe overload of a line is correctly prcdictcd  and the second less
severe overload is missed. Only in 0.7% of all cases the ANN predicts
normal operating for all lines thus nlissiog  a present overload. 7he
significant pcrccntagc  of the false alarms occurs at border neurons of
unsafe clusters.

4.5. Inlcrprehlion  oflhr  Wci~hts

Iiach neuron of the Kohoncn map can he associated with its weight
vector which rcprcscnts  a protrrtypc of a class of input vectors.
IIowcvcr,  some ncur-ons  never classify ar~y training vector. We
therefore need a firoccdurc to establish the security class reprtxcntsd  by
these weight vectors withoot any a-priori information on the test vectors
which might bc classified by these neurons.

l’hc weight vectors Ihemsclvcs are calculated as a weighted sum of a
certain nornbcr of input vectors which form a class. Ilvmfore, with our
choice of variables for the components of the input vectors, each cmmpo
ncnt of a weight vector rcprcsurLs  either an active or a reactive line powel
flow. For example, the first component of every weight vecto)
czsrrcsponds 10 the active power in the branch North-1 ake.

In order to analym the weight vectors wc do nor need any information ou
the class of input vcclors. ‘J”hc features  of these classes are directly
rcprcscnted by the values of the wcigh(  vectors.

In Table 5, threz out of the 49 weight vectors are rcJ~resented,  Neurons
5 and 6 arc ncighhurs  in tllc feature map (see Iiigrrre 6) and the weight
vcctrrrs arc close to each other with respect 10 the Euclidean distance.
Note that weight vccklr S represents the single outage of N-1.,  wherea<
vcclor 6 rcprcscnts  the doul~lc outage of N.1. and S-M. Neuron 45 i.s
situated relatively far away from neurons S and 6 and represents a
contingency of line N-S resulting irr an overload of N-1..

Tat,tc 5: Vt’cigl,[  vcctrm of rrcurrm  S, 6 aad 4S,

bG
— . .

Lin9 W*lght V*CtO1 O f 19’oigrlt V*ctor or Hclght  vector of
rmuron 5 [UVXl nmron 6 [rrfA] neuron  45 tsilm]

Fir.’ 0.0 + 0.0 0.04 j 0.0 1?8.9  . j 4.5
!4s 138.4 -  42.1 115.3 - j41.5 0.0 + j 0.0
SE 62.2 + j10.1 79.6 - jll,4 40.0 + 516.8
.%s4: 42.7 + j 6.2 0.0 + j 0.0 -2.4 4 522. s
Sk 44.2 + j 9.7 71.8  + j18.9 -13.4  + j2ri.2
IA’I: -2.1 - j s .2 2?.5 - j 2.4 64.4 - j31.O
M E -0.6 - 2.1 _:26.  G - j5.8— .  — . . 21.1 - jlo.7 i

Let  US now consider the third component of all weight vectors,
corres~mding  to the active power of line N-S, i. c. the rest part of the
complex nurntscr in the highlighted line in Table 5. This cxsmponcnt is
represerlkxt for all 49 neurons in a threedirnensionrd  representation on
the left hand side of l’igulc  7. The 49 neurons are distributed
equidistantly on the vertices of the sqursrc-lattice in the xy plane (some of
the horder neurons have been labeled with their number), and the “z”-
dirnension  represents fhc third component of the weight vectors. ‘I?rose
neurons in which this value (i. e. the active power on line N-S) exceeds
the ma~irnally allowed vtilue are marked hy dark circles, and neurons
with vei y weak loads (uwall  y wrresponding  to outages) are marked by
white circles.

lt is seen in this rtpresetttation  that the N-S component of neurons 28,
35, 42 to 45 and 48 is extremely small, Since input vectors
wrresponding  to N-S outages will have the corresponding vector
compcment equal to zero, the neurons menfioncd above will likely be
close k, these cases and therefore classify N-S contingencies. We have
already seen the case of ncuroo 4S which indeed classifies the single
outage N-S.

*k  Pomr?trk  Uol.ksoub

w

Em”

Figure 7: Tlrrec-diamsiaaal  view’ of llre 49 weig.lu  VW1OS  corrlponusLs  corrcqonding
In rhc. a live POwcz  flow,  of 1 OIC Norll  I- SrJultI anrf  corre.qxmrfirrg  flaI  componmt  maf.

If we assume again an il~tive  power limit of 100 MW for line N-S, the
compal  ison of this lin)it to the corresponding weight vector component
of neuron i indicates whether nctrron i classifies system states that arc
likely to violate this limit. In the discussed cxarnplc,  neurons 1-6,8-13
and 16-18 have N-S conqmncnts  exceeding the given limit and will most
likely classify cases tori csJsonding to N-S overloads. We report the
wnlpolrcnLs indicatin~ overloads on the twc)-dimcnsionrd  grid of our 7x7
feature map to the rig.ht-hand-side of Figure 5, thus establishing a
corryrrmenr  map for line N-S. Also in this representation, overloads are
marked by dark shadinx of the wrrcsponding  neurons (we do not mark
outages explicitly).

We prt}ceed in the sarnc manner with the other 13 components of the
weight vectors. By anaiyz.ing  these component maps, the properties of
neurons not classifying any of the training vectors can he determiocd.
For example ncumns 3, 11, 12 and 13 will also classify overloads of
North-South, they need not classify any of the training vcctrrrs.  We will
caH thii the gencralizatiorl capability of the feature map.

4.6. The Cluster Map - An Assembly o$lhe Componerri  Maps

Ilris synthetic representation of the properties of the weight vectors is
usually called cluster map. IL corresponds to the top layer in Figure 8
which illustrates schcmaticatly how the cluster map is rwscmtkd

The top map is the cor]lbination  of all lower (component) maps. I;or
each wei~ht vector component there is one component map, only four of
t h e m  heifig shown,
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I;lgurc  6: Gcmexalicm  of lhc cluslu map.

The cluster map is generated as a superposition of the component malx
estrddishcd from the analysis of the weight vcctcws (only four of the
componcnt$ maps are shown schematically). 31x 7x7 neurons on ttie
cmnponcnt  maps are situated as usual on the crossings of the hori7mdal
and vertical lines. The qualitative irlforma(ion  of secure and insecure
ncuroos  can hc coded m patterns or colors.

I’or the cluster map, wc have used cxcltrsivcly information from the
weight vectors. We would like to cmphwiy.c, that it is one of the. crucial
advantages of the self  -organi?.irlg, feature I nap tcchnicprc that a-prio] i
information on the test vcclors is 001 ncc.essary to classify the systcm
states. IIIC  unsupervised learning algoridm]  reveals the underlying
strocturc of the input data withotrl requiring any explicit knowledge about
the Syslcm,

4.7. Surrrmmy

The classification of power system slates with the self-organizing feature
map can be sumnwi7d  as  follows:

1)

2)

3)

4)

The neural net is trained off-line with one or several ba~e cases and
the related n-l  or rr-2 contingencies. These contingencies can
equally be regarded as different topologies of the power system.
An unknown operating state is prescntrxt in real time to the ncoral
ne[. ‘lhc neural net considers this state as a base case and will
classify this case by a prototy~ state, e. g. weight vector 33.
Knowing that e. g. all contingency of line N-S of the vectors of
class 33 will Icad to an overload in line N-I. the neural net drtiws
similar conclusions for all n-1 or n-2 contingcrlcics of the unknown
operating s(atc. If the. unkltowo  operalin~ state corresponds al-

ready to a different topology obtained from the base case hy tiiking
onc Iinc out, then cxmclusions can bc drawn for all single cotltin-
gcncics of the case J]rovidcd all n-2 contingencies have been
trained.
If during power system operation the classiflc[ition of the operating
state moves from neuron 33 over to neul-on 25, the neural net

fu, thcr indicates that the trajectory of the operating point nlovcs
towards rur overload situation concerning line N-S or line S.E,

I?rere ale several advanfagcs to tlis approach:

a)

h)

c)

d)

5.1.

There is no need to  run a contingency analysis in real tirnc and
therefore the prob]cm of combinatorial explosion can be avoided
dmirrg  operation.
The classification of  a case is cxtfcrncly fast, since it only requires

the evaluation of a limited number of distances.
10 addition to the classification of the present state, the trajectory of
the operating states predicts the overall tendency for futrrrc opcrat-
ir,g states allowing early prevcnfive action to be taken.
h] traditional eonhrd centers, the operating situation is presented
either alpharsumcrically or by colored graphs of the power system,
often containing hundreds of distinct, differcntty  colored lines.
1 be relation between a contingency in line a and an overload in Line
b can neither be directly concluded from the graph nor from the
n urnbcrs although expericncwt oparators would know thcm for the
nlost common operating situations. llc two-dimensional map re-
groups these relations into distinct security areas thus exhibiting the
qualitative behavior of the power system even for unusual operat-
it]g situations. These maps can be ideally displayed on a color
Inrrninat,

5. ARTfl’I~lAl.  NEIJRAI.  NIilWORKS  IN DSA

fh’erview oj ANN Jor Dynamic Sccuriry  Asscsstnenr

Although dynamic security is dcfirrcd as security with respect to transient
stability, there are many instances where it has hcen used with dynamic
stability connotations. Dynamic stability of a power system is
dcterrllincd by the eigerwalucs of the lincarimd  state space model of the
systel,l  generators. Presence of cigenvalues  with positive real
rnm~mcnts  itrdicatc dynamic inslahility.  IIowever,  eigenvalues  are
snsceliible to changes in operating point and toplogy of the pewer
system and have to be frequently re-evaluated  at significant
computational cost. in [111 -Sharkawi er aL, 1989], a neural network
approach to predict the dynamic stahil~ty  status of a power systcm was
proposed. A layered pcrceptrorr was traured to learn the implicit mapping
between varying systcm operating states such as real and reactive
injcc[ions at selected buses and the corresponding dynamic security
status. The trained neural network was used to create 2-dimensional
security cxmtorrrs  with rcspmt  to the selected system attrihutcs.

A sinlilar  concept but for a Kohonen  net is proposed in [Mori et al.,
199 1]. The inputs to the neural network were the d-q axis voltages,
rotor angles and speeds of the individual generators. The output was a
900 IIcrrrotr (30x30) 2-dinwnsional grid. I?ris grid was divided into 10
diffe] cnt areas based cm the magnitude of the largest eigenvalue within
the u~lit circle. Hence the output was indicative of the degree of scmrrity
rather than  a binary security index as with [Fischl er al., 1989].

The {oneept of crifical dca~-ing  finre (CX3’) is also a measure of dynamic
secu]  ity of a power system. 1 [owevcr, it is a complex function of the
povwr  system topolc~gy, load Icvcl, and fault characteristic. ‘1’hc
calc~llation of CWT involves considerable computational cost In
[Sobajic and I’ao, 1989], a technique was proposed where a layered
pcrceptron was trained to predict the W1 for a fault based on the pre-
fault system attributes, such as the acceleration powers and the relative
load angles of individual generators, The training patterns were
generated for different load levels and base topologies. The
corresponding CCTS were derived by numerical integration of the
systcm state equaticms. It was proved that the neural network can
generalize its knowledge to previously unencountered  system topologies
and load levels and predict the fXT with reasonable accuracy. In a
follow up [Pan and Sohajic, 1991], a combined unsrspcrviscdhrpcrviscd
learning algorithm was proposed to solve the same problem. The input
dat~ was pre-processrd  using an unsupervised clustering algorithm in
order to enhance the accuracy of the supervised learning algorithm. A
scp;irate set of feahrres were sclectcd for each cluster based on the
eovariance rllatrix.

It was pointed out in [Kurnar et al., 1991; fHH, 1994] that most of the
research done up to date in the area of dynamic security were conceptual
investigations and as such, they had impressive results. It was noted
however, that considcrahle  progress has to be made before thesf:
leclmiqucs  are applic.ahlc in a realistic on-line security assessment
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ptickagc. The major obstacles arc the dimcrrsionality  and the.“ combinatorial complexity of a rcal power system. Kumar, et al., [ 1991]
proposed a hybrid expert syshmhleural  network approach which can
cffcctivcly  utilize the exis t ing high level knrrwlcdgc  of d)c syslcm
operators while training neural networks to execute the more rrnccslain
lower level tasks.

5,2. f’rrrlui!r%g arc af

The prime candidates for application of neural networks arc in the
strtrproblcms of DSA which require generalization of the results of cmes
studied hy engineers, to the many potential situations that cannot hc
studied. Some of the otwious candidate subproblcms arc in [Kurnar e(
a)., 1991; CE1 1994]:

in conlirrgerrcy selcc[ion,  to identify potentially severe oulages
based on the current operating state.
in rwnfingency screening, to identify dcfinitc]y  harmless and
potentially harmful contingencies.
in determining conditions for termination of time domain
simulations.
in dcte.nnining prc-contirrgency transfer limits

6. CONITNGHNCY  SCREENING IIY I. AYEREI>  PERC3WTRONS

~ontingcncy  sc.recning is a fast approxirniite method of determining,
whether a contingency has the potcntiaI to cause security violations. Ilrr
proposcrt  mrslti-layered contingency screening approach is given ill
I;igure 9. Scrccos at each level have significantly different capabilities
and accuracy in detecting contingencies with potential violations. Neural
networks arc selected for one lCVCI of scrccning. Ixiycred perce.ptrons  am
trained to identify dynamic security with respect to a selected set of
contingencies based on pre/post  contingency system indices. l’hc,.
approach has a striking  rmmlarity  to tklat  for static security. lIowcvcr
some rcai issues wltb respect to dimensional and combinatorial
complexity need to be addressed.

Iiach pre-cootirrgency  configuration gives rise to many post-
contingcncy cxmflgurations.
Generation schcdrrlc of the power system is a function of marty
factors that may not rdl be identified.
The number of possitdc system configurations is large.
Ilrc number of available training ctwes are rcla[ively small

Ihc first issue is unique to dynamic security. Por example, the same pre-
con[ingcncy power system can bc either secure or insecure dc~nding  on
how soon the fault is cleared. lhcreforc, sccurily cannot be estimated
based solely on pm-fault features. Ooe way to deal with the problem is to
derive a set of indices (features) which describe the condition of the.
~wer system immediately following fault clearing, in terms of the pre-
contingcocy steady state. Il)c elapsed time prior to fault clearance will he
implicitly captured through deviation of the indices. Moreover, d]c
features should not be too sensitive to the system configuration and then
have the neural nclwork gcncraliz.e among the unseen topologies.
lJollowing arc sornc of the suggested guide lines for generating features
for security studies [Kornru r[ al., 1991; Clll 1994]:

~alculatcd  for each cmmponcnt  of the system.
Raised to a high de~,ree to acccrrtuatc the diffcrcncc  bctwccn  snla]]
and large values and thus reduce the effect of masking.
Normalimd  to make thcm configuration indcpcrrderrt and to avoid
rrtsl ncrical overflow problems.
A\’craged out over the relevant Ccunponcnt$

A set of high level features defined under the above guidelines arc
described below [Kumar el al., 1991; ~EI  1994].

The risk to the systcm security through increased generation and lower
system voItages are captured by,

The

generator real power output (norrnafized by inertia)
generator reactive fnwer  output (nonnaliwt  by inertia)
generator apparent powtx (nom~alizml  by inertia)
generator bms voltage
generator rotor angle. with respect to center of inertia
~COeSTIbr  (~)  -  @&,)/p

effects of increased line loads. the vtrhrcrabilitv  of the “down
stream’ system scan from the generator are captured by at tributa,

line sending end real power (nommlimd  tsy line reactance)
line sending end reactive power (oormalimd  by line. reactance)

- hoc phase angle
line sending end (Q - Ql,ti)/P

‘f?~c  effects of low bus voltages, high bus loads, high power transfer
across pre-spccificd  interfaces and overall sys{cm loading are captured
throuf,h  attributes,

t,us load (nomralixd  by the line admittance)
- t,us voltage

real power flow in pre-specified  interfaces (normalized by the
admittance)
] cactivc power flow in pre-specified interfaces (normalized by the
admittance)
sys[crn reactive power generation (normalized by total real power)

- system stress

In addition, the following variables describing the transient conditions
immediately following fault clearance may also be needed.

change in speed c)f generator
change in kinetic energy of generator
acceleration of generator
approx$latc  ~tcntial energy of generator
approximate encl gy ratio
‘N of systcrn center of inertia

Since the indices arc averaged over the relevant compncnts,  the number
of ir(dices are independent of the size of the power systcrn. This is
specialty useful in dealing with large scale power systems.

+

[.
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Sin. ulotor
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F’Igute  9 Multi-layc~ed  conliagawy  .SCImJI”kF,
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, 7. ~ASE  STLJDY

El’RI, ABI1-SystC!n~  fhntrol and the [Jnivcrsity  of  Washington
cooperated in a fcmlbdlty study on the applicability of NN to the security
awessmcnt  [Kumar et al., 1991; ~EI 1994]. In this sh.rdy,  the clynarnic
security of an equivalent test system of Ontario-I Iydro (011) is
investigated under 6 speeihcd  faults using layered per.xptrons.  Training
data for cmr)binatiotrs of 7 different load levels and 9 different clearing
times totaling 63 (9x7) patterns, are given under each fault. I’hc
corresponding dynamic security flag (secure=O, insecure=l  ) is also
given. lle security contours of each contingency as a function of load
level and clearing time arc given in Figure 10. The training duta were
generated on transient analysis programs of ADD Inc. The preliminary
study was for security classification under two conditions: with and
witbout the knowledge of ~ontingency.

7.1. Crrrrtingcncy  rmd Topology Specvic  Class jjlcation Without
Fedlure Exlraftiort

In this study, 6 individual neural networks were trained to assess
dynamic security under 6 ecrntingencies. 63 patterns e.haracterizing each
eontingcnc y were derived from the same base topology of the steady
state power system  Ilach pattcm contains 28 attributes derived from the
previously specified list of features which were measured at the point cjf
faull clearing.

Each data set was nrsrmalixed  between O and 1, and randomly shuffled to
remove any bias towards the selection of training and testing data. lablc
6 gives the common arcbitcchrrc  and learning parameters of the
contingency specific neural nctworh.

‘f ’ahlc  6 Ncmal Network Parammrs

An-tutcrturc l~armiag  stalislks

input d inw~~s ion = 28 L-arming step = 0.05
Orr(pa(  dlmcslsloll = rnoalr!mluta = 0.05
1 training parrems  = 50
IIill{lcll layws = 1 Icsting  palrczms = 13
IU(I(IL7,  llerrrorL.  =  8 lIcxatiw]  sweeps =- loofr

‘] ’ahlc 7 gives k chsssifrcation performance on the training and testing
SCLS  under each contingency. I;or cacb neural network, the actual ratio  of
secure and insecure prrt[crns for the corresponding training and tesiing
seLs arc given.  “]hc cksifrcirlion  accuracy is given try me number of false
alarms and misses.

Table 7 Classification Rc.wdls

‘I”raining  Scl Testing Sd

C’cH1[inFcacy .sm urcltm<ti-urc alarnwhkscs .WHlrchsmarre alarm.dmiwcs

1 33/17 0/0 914 011
2 24f26 0/0 815 010
3 12/38 Om 5/8 0/0
4 50/() 0/0 I 3m Ofo
s 4416 0/0 12/1 0/0
6 4s15 0/0 1 In 0/0

A ~raphical interpretation of the neuraJ network output under each
contingency is given in ligtrre  10. Contingency 4 is omitted since it has
no insccrsrities as seen from Tahlc 7. A mesh plot of the neural nclwork
rrtstpul surface for the 63 pattcros is given cm the left. On the right, the
contour of the neural  nc(work  output threshold (0.5) (—) is
superimposed on tbc actual secure/insecure corridor (-----) of the
corresponding contingency over all e.omhinations  of load Icvels and
clearing Iilllcs.

It is interesting to note tha[ none of the contingerscics had false alarnw.
1 Iowcver, under contingency 1, the neural net threshold intruded into the
insecure region as seen in Figure 10 (a) on the next page. This tends k]
produce false dismissals which was confirmed by the classiflcrrtion
performance in “1’ahlc 7.

7.2 Topology Spccl~Jr Chmsl>caliomf  with Fermrre Selection

Following the success of the previous test, an enhan&d  set of 52
features were used to dcscrihc  the same fault phenomena. l%esc new
features were introduced to unmask the sign of the previous indiea
which disappeared when raised to a higher degree as explained earlier.
The enbarreed features woolcl  enable the use of a single neurrd network to
classify security under aIl contingencies. AU other dyrtarnies remained tlic
same.

Two neural networks were tmined for security classification: the first
used all S2 attributes as inputs. and the second used 24 features selected
through the feature extraction algorithm descritrcd earlier. The training
and testing data sets for both neural networks had the same ~nsistertcy.
They were obtained by rmclondy shuffling the initial 378 patterns 152S6
times. “Ihe first 300 patterns were used for training and the remaining 78
patterns for testing. ‘Ihe random shuffling was done to ensure that data
corresponding to all eontingcncics,  load levels, and clc.arirrg times were
randorr)ly allocated to the training and testing sets. Table 8 prewnts  the
trainin~ and testing statistics for the two neursd networks

Tabk 8 Ncsml  NcIwork  Training and Tr.$ting  Data

Ncmal llCtWWk without with
haining  an(l testing fratarc feature

.Srlmli[m Setretim

An]urccturc

input.<

outputs
hi(hkn  Layers
ltiddr21  ncunm%

lfamia~,

Icarrlin);  slcp

monwmlu  ni

itc7atirms
CPU time (W)

Prrfrmauux

lrainin~  data
.mmrlv  data
ULUCUTC.  rtara
fal.w ar~l,s
fdLw dismiwal
tr.iining  crrm

Ie..tillg  data
.mxl  rc rl.ata
irI.Wure.  data
falx alarll~s
fak Ihsmi<sal
tr.slill~ cmor

52
1
1
3

0.05
().05
2700
88.38

300
210
90
2
2

1.754

78
56
22

1
0

0,561

24
1
1
3

,0.05
0.05
3600
42.9

300
210
90
t
o

1.757

78
56
22

1
0

0.557

For comparison, the salne training parameters were USXJ in both cases.
Both neural networks were trained until the same training error (E) was
obtair)ed. Ile variation of lraining error E vs. the number of iterations
were plotted in Figure 11. It is interesting to note that the neural network
trained with selected features took more iterations to achieve a cmmprrra-
hle e] ror. however, due to ifs compact architecture, the CPU time used
during training was Icw’cr.  Moreover, as seen from Table 8, improved
ovcmll classification perfrsrmanee on the training and testing sets indicate
a superior generalization capability through the use of feature selection.

I:igrrre 12 presents a contour plot of the output surface of the neural
network trained with the 24 selected features, with respect to tbc 5 nort-
trivial eontirrgencies. ‘Jhcy were generated as described under Figure 10.
Ilesidcs  the 0.5 threshokl  contour, those c.onesponding  to 0.4 and 0.6
were also plotted in order to investigate the degree of confidence of the
neural network classifications.

lt cari be seen from lhe 5 contour plots that neural network displays the
hcst  performance Wt)el, classifying contingencies 3 and 5. In this case,
both 0.4 and 0.6 contours arc witbin the security corridor.
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lJndcr ccsntingcncies 1 and 2, the classifier is biased towards producing
false alarms. Ilowevcr,  the given data set is classified free of errors.
Both false alarms that are encounkxed  in ‘l’able 8 seem to occur unclcr
contingency 6. however, the fact that there are no false dismissals is an
encouraging sign of the neural network’s ability to gcnerali?.e among
contingencies.

8. ~ON~l.lJSION

8,1 .~UttU)JU~

Security  assessment  is formulated as a classification prohlcm  where
traincrl  ANNs arc used as classifiers. The motivation is 10 usc the
concepls  of pattern recognition to improve the speed of security
mscssmcnt computations.

Most artificial neural net approaches SOIVC  a rrmrc global task then
class it’al security assessment in which the rxmtingcncy  classification,
ranking and evacuation are the primary problems. They attempt to fmd a
global description of t}le operating space (or parts of it) and iLs semrhy
hourrdaries. As statistical tools they dcperrd heavily on good statistical
rcprcscntation of Ihe operating spat;.  -

Since the security analysis protbn  is of high dimensions, most ANN
methods suffer from the combinatorial explosion of the numhcr of
contitlgcncics in the same way m classical methods. I Iowcver, hccause
of their parallel computational approach this prohlcm is more severe, and
some type of partitioning and sequcncirrg needs to he made. When
comparing strperviscd and unsupervised ANNs, wc ncstc that they have
ctiffelent objectives. Llnsupcrviscd  approaches usual ly  divide the

opera[ing space into classes of operating points, thus prc-processing the
dala set by reducing it into a limited numtscr of typical cases. I?rcse
cases can then hc evaluated either with standard methods or with

13
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supervised Icaming. Supervised approaches attempt to appmximrs(e the
security boundaries Of thc  operating space, thus memorizing data  poinLs
of a high-d inwnsiorlal  function and interpolating hctwemr them.

For high-dimensional operating spaces, it is not feasible to generate a
sufficiently Iargc, statistically significant training set for the ‘imnpletc set
of operating points. In daily operation, only a limited number of
o p e r a t i n g  situatiorl.s are .planncd. The set of training  vectors will  bC

generated by tralnlng with input vectors selected randomly from the
region of the schcdu Icd operating points. If these operating points
change significantly, some types of ncurrtf networks have to tse trained
again, even daily, if necessary. (Of course, the weigh! veciors of trained
networks can bc stored off-line and used again for similar operating
conditions.) In contrast to many other neural net applications, tramirrg
time is a crucial issue in power system sccunty  assessment. An effrcicnt
in~plcmcntatiorr of Kohoncn networks on spcciali?xd  hardware is
discussed in [~ornu cl al, 1994].

8.2 Chrlllrrrgc.r

When NN is used, the investigated issues should include:

Protdcm partitioning that incorporate neural networks to expedite
security calculations while preserving the advantages of
ccrnvcntional  pmhlcm solving paradigms.

C)racle and support software which can extract features from the
pre/post-contingency power system information with respccl  to
different sysIcms, tofxrlogics, and confi~uratior:s.

Statistical feature selection tmhniques  to reduce the dimcnsionality
of the input data while preserving classification accuracy. lhis
would complement the higher lCVCI  feature selection that may have
already bun pcrfonncd  through cxperl k nowlcxtgc.

~apahility  of neural networks to correctly cla..sify and gmreraliz.e
security among correlated and uncorrelatcd loading. conditions. This
is contrary to a conforming load model that has been usecl in rnosl
Iitcraturc to date.

Selection of neural network architecture and learning algorithm,
such as net siz.c, learning step, numhcr of training patterns, and
iterations, hascd on the distinctive features of the protdem such m
size of power systcm,  nature of contingency, and numhcr of
violalirms.

Ability of the NN to gcncraliz.c among diffcrcmt cxsntingcncies  ancl
operating.

Ability of the NN to recognize the secure region in the operational
scram.. In other words, the NN should hc able to perform a contour
;acki  rig of the sccurc region.

lirturc  research needs to focus more on adaptive lcamiug techniques and
ancillary tcchniquc$,  as discussed in [1~1-Sharkawi,  1995], in order to
hrcak down the dimcusirmality  of the assessment task.

I’inally, one needs IO develop ANN design prwcdures  which will opti-
mize the performance of the ANN in terms of the security assessment
problcm,  i.e., n]inimizc the performance indices suggested in ScctirrII
3.5.
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